

Lesson Exemplar for Science

Quarter 1 Lesson 2

Lesson Exemplar for Science 7 Quarter 1: Lesson 2 (Week 2) S.Y. 2024-2025

This material is intended exclusively for the use of teachers participating in the implementation of the MATATAG K to 10 Curriculum during the School Year 2024-2025. It aims to assist in delivering the curriculum content, standards, and lesson competencies. Any unauthorized reproduction, distribution, modification, or utilization of this material beyond the designated scope is strictly prohibited and may result in appropriate legal actions and disciplinary measures.

Borrowed content included in this material are owned by their respective copyright holders. Every effort has been made to locate and obtain permission to use these materials from their respective copyright owners. The publisher and development team do not represent nor claim ownership over them.

Development Team
Writers: • Jefferson E. Flores (Leyte Normal University)
Validator: • Diana Lou E. Sipalay (Caloocan High School)
Management Team
Philippine Normal University Research Institute for Teacher Quality SiMERR National Research Centre

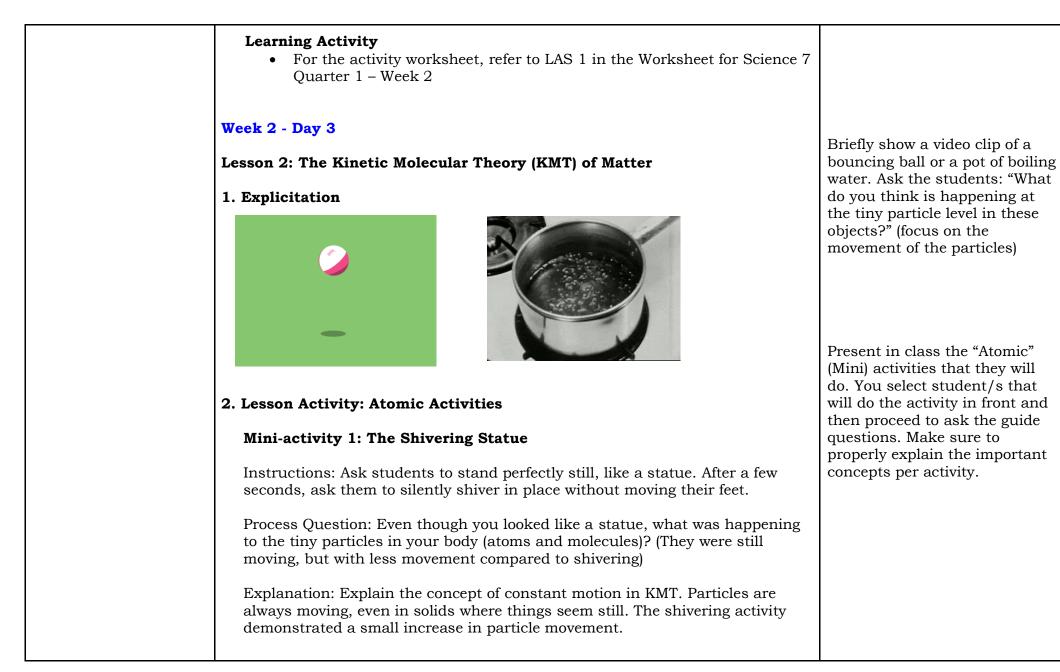
Every care has been taken to ensure the accuracy of the information provided in this material. For inquiries or feedback, please write or call the Office of the Director of the Bureau of Learning Resources via telephone numbers (02) 8634-1072 and 8631-6922 or by email at blr.od@deped.gov.ph

SCIENCE (CHEMISTRY) / QUARTER 1 / GRADE 7

I. CU	RRICULUM CONT	TENT, STANDARDS, AND LESSON COMPETENCIES
А.	Content Standards	The learners shall learn that there are specific processes for planning, conducting, and recording scientific investigations
В.	Performance Standards	By the end of the quarter, the learners shall recognize that scientists use models to describe the particle model of matter. They use diagrams and illustrations to explain the motion and arrangement of particles during changes of state. They demonstrate an understanding of the role of solute and solvent in solutions and the factors that affect solubility. They demonstrate skills to plan and conduct a scientific investigation making accurate measurements and using standard units.
C.	Learning Competencies and Objectives	 Learning Competency The learners shall be able to: describe the Particle Model of Matter as "All matter is made up of tiny particles with each pure substance having its own kind of particles."; and describe that particles are constantly in motion, have spaces between them, attract each other, and move faster as the temperature increases (or with the addition of heat). Lesson Objectives: The learners shall be able to: differentiate elements and compounds based on particle composition; and explain how the Kinetic Molecular Theory describes the behavior of particles in terms of constant motion, spacing between particles, and the relationship between temperature and particle speed.
C.	Content	Pure SubstancesKinetic Molecular Theory of Matter
D.	Integration	 Exploring the nature of matter fosters a sense of curiosity about the world around us. A basic understanding of KMT contributes to scientific literacy, allowing individuals to make informed decisions about their environment, and the products they use. The critical thinking and problem-solving skills developed in these lessons are valuable for various aspects of life beyond science

II. LEARNING RESOURCES

• Worksheet for Science 7 Quarter 1 – Week 2


TEACHING AND LEA	ARNING PROCEDURE	NOTES TO TEACHERS
1. Activating Prior Knowledge	WEEK 2 -Day 1 1. Short Review - Particle Party!	Distribute index cards and markers or make this their assignment before the end o Week 1.
	This activity bridges the gap between atomic models and Kinetic Molecular Theory (KMT).	
	Materials: • Index cards (enough for each student) • Markers	
	 Essential Questions for Review: 1. What are atoms made of? (protons, neutrons, and electrons) 2. What does the particle model tell us about matter? (made of tiny particles) 	Briefly remind students about the atomic model learned in the previous lesson.
	 Activity for Students: 1. Imagine tiny particles representing atoms or molecules. On your index cards, draw these "partying particles." 2. Use arrows on your cards to show the movement of the particles. Represent "cold" particles with slow, short arrows on one side of the card while "hot" particles with fast, long arrows. 	Briefly discuss the drawing Ask students to explain ho their drawings relate to th particle model and the conce of temperature.

	"cold" particles "hot" particles "cold" particles "hot" particles Key Points for Review: "hot" particles are constantly moving (even in solids!), there are spaces between particles, and the speed of particle motion increases with temperature.	Reiterate this important concept as a springboard to the lessons for Week 2.
2. Establishing Lesson Purpose	 Lesson Purpose Introduce Pure substances – elements and compounds in our daily life Connect scientific models with particles of pure substances 	Introduce the Pure substances – elements and compounds. Teased the learners with some important elements and compounds they encounter in their daily lives. Tell them that the particles of these pure substances can be illustrated using a conceptual model. Then relate the model to the concept of Kinetic Molecular Theory (KMT) to explain the behavior of these "partying particles". Emphasize that this lesson aims to equip them with a foundational understanding of the Kinetic Molecular Theory (KMT) and its applications to particles of materials.

 2. Unlocking Content Vocabulary: Vocabulary Scramble! Materials: Whiteboard or projector Markers or pens (if using whiteboard) List of KMT vocabulary words scrambled (e.g., TICELPAR, ONITMO, PERATREMTEU) Optional: Stickers or small prizes for the winning team (increases engagement) 	You divide the class into teams of 4 or 5. Project or write on the board a list of vocabulary words related to KMT, but with the letters scrambled. Instruct teams to unscramble the words within a time limit of 3-5 minutes (depending on difficulty).
 General Instructions for students: You will be divided into groups of 4 or 5. Think of a team name. On the board, you will see the list of vocabulary words related to KMT, but the letters are scrambled. Unscramble the words within a time limit given by your teacher. Point for Discussion: How does particle motion relate to temperature? Why are spaces between particles important? 	Award points to the team who unscrambles the most words correctly within the time limit. After the time is up, reveal the unscrambled words and their definitions, can be in a slide deck or using written visuals. Discuss the meaning of each vocabulary word in the context of KMT by asking these questions.
	Examples of Scrambled KMT Vocabulary Words: • TICELPAR (Particle) • ONITMO (Motion) • SUFNOIDIF (Diffusion) • PERATREMTEU (Temperature) • CANEPS (Space) • EOIYVLCT (Velocity) • TRACATITRON (Attraction) • SEHPA (Phase) • NEREGY (Energy) • ILUQID (Liquid) • DLIOS (Solid)

		 OELEUCLM (Molecule) ORCESF (Forces) NIBOILG (Boiling Point) SOILUBITLY (Solubility)
3. Developing and Deepening Understanding	Week 2 - Day 2 Lesson 1: Elements and Compounds 1. Explicitation: Quick Questions:	Begin with a quick review of the previous lesson on the particle model of matter. Ask students the quick questions.
	 What are the basic units that make up all matter according to the particle model? (Particles) How does the movement and arrangement of these particles affect the state of matter (solid, liquid, gas)? (Students should recall that movement and spacing influence the state.) 2. Lesson Activity: Think-Pair-Share <i>Processing Questions:</i> 	Allow brainstorming for various materials like water, sugar, iron, etc.
	Can you think of any examples of different types of matter? Do you think these materials are made up of the same tiny particles? Why or why not? Only one type of More than one type of substance present Matter Pure Substance Mixture	After Processing the answers, show the figure to the class. Focus on the pure substances only. You can pre-empt Mixtures, but this will be tackled in detail in the succeeding weeks.
	One type of atoms More than one type of atoms Uniform composition Irregular composition Element Compound Homogeneous Heterogeneous Source: https://chem.libretexts.org/@api/deki/files/294894/Classification_of_Matter_(1).png?revision=1	After discussing properties and characteristics, even samples, of pure substances, ask the learners to evaluate the situations.

from smaller made of carb	Consider tearing building blocks oon, hydrogen, as	g a piece of tissue like cellulose fib nd oxygen atoms	e paper. Tissue p ers. These fibers s linked together plex fibers, not in	are themselves in a specific	
mostly made	e up of a single el ating tiny pieces on: ion can you mak	lement called alu of aluminum, ea	num foil. Alumin uminum (Al). Wh ach still being alu nd compounds?	en you rip it, ıminum.	After the activity, summarize the discussion by asking the essential question.
3. Worked Exam The following is a	-		into elements ar	nd compounds.	Students should be able to group them into elements and compounds. Instruct them to rewrite the substance' name in the box for elements and
Baking Soda	Vinegar	Sugar	Shiny Coin	Graphite (Pencil Lead)	compounds.
Aluminum Foil	Diamond	Stainless Steel	Sulfur Powder	Table Salt	
	Elements		Compounds		

Instructions: Ask students to stand shoulder-to-shoulder, representing tightly packed particles in a solid. Then, ask them to take a comfortable step back, representing the spaces between particles in a liquid. Finally, ask them to spread out even further, representing the spaces between particles in a gas.

Process Question: How did the space between you change throughout the activity? (The space increased as we went from solid to liquid to gas)

Explanation: Explain that particles are not glued together. There are spaces between them, although these spaces may be very small, especially in solids

Mini-Activity 3: Particle Dance Party!

Instructions: Play some upbeat music and ask students to pretend they are tiny particles. Instruct them to move slowly at first, representing particles in a cold substance. As the music gets faster, instruct them to move more vigorously, representing particles in a hot substance.

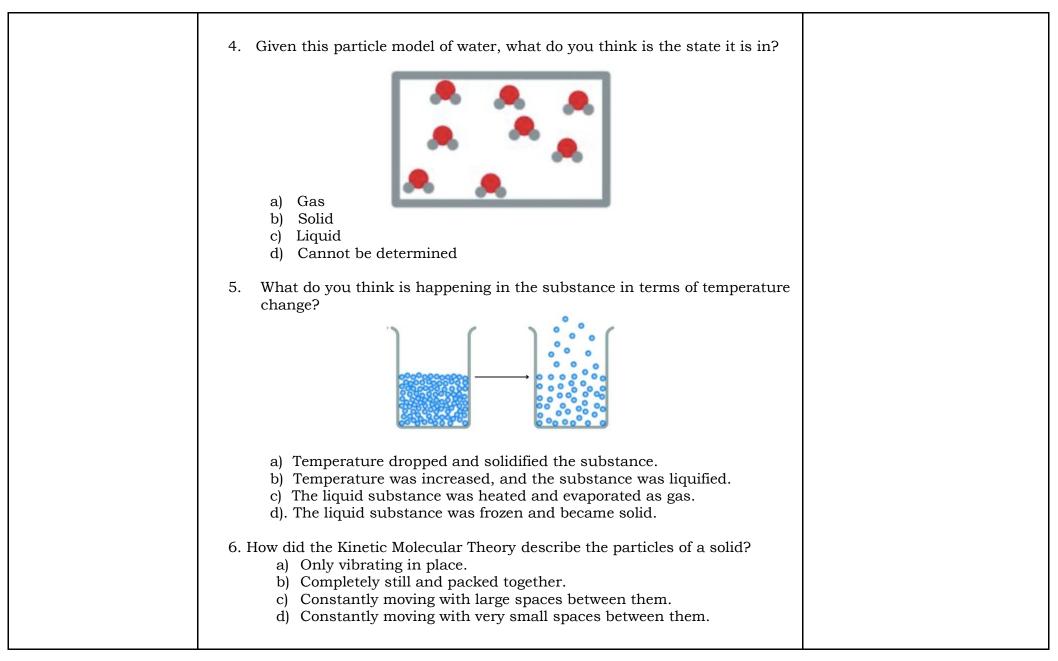
Process Question: How did the speed of your movement change with the music? (The movement became faster as the music got faster)

Explanation: Explain the relationship between temperature and particle motion according to KMT. Higher temperatures correspond to faster-moving particles. The music simulated adding thermal energy, which increased the speed of the "particle dance party."

3. Worked Example: The Fizzy Fun of Diffusion

Investigate how different factors can influence the rate of diffusion with special focus on the effect of temperature on the movement of gas particles from an effervescent tablet.

Refer to LAS 2 in the Worksheet for Science 7 Quarter 1 – Week 2 Week 2 – Day 4 After all the mini-activities, briefly summarize the key points of KMT: constant motion, spaces between particles, and the influence of temperature on motion.


Mention that the upcoming activities (The Fizzy Fun of Diffusion) will allow them to further explore these concepts through hands-on experiences.

Briefly introduce the concept of diffusion – the movement of particles from an area of high concentration to an area of low concentration. Explain that this phenomenon occurs in liquids.

After doing LAS 2, discussion follows the next day, Day 4. Focus on the questions in the worksheet and clear misconceptions.

	 Processing Questions after the activity, LAS 2: 1. How do your observations relate to the concept of temperature and particle movement according to Kinetic Molecular Theory (KMT)? 2. Explain why the bubbles seemed to move faster (or slower) in one container compared to the other. 3. Based on this experiment, what can you predict about the rate of diffusion of food coloring in warm water versus cold water? Why? 	
4. Making Generalizations	 Learners' Takeaways Describe the key difference between an element and a compound in terms of their composition and particles. How do particles behave in terms of their motion, spacing, and the relationship between temperature and particle speed as described by the KMT? Reflection on Learning Ask students the question: Imagine shrinking yourself down to the size of an atom! Based on what you learned about Kinetic Molecular Theory (KMT), describe what the world around you would look like and how you would interact with it. Consider scenarios like you are a solid, liquid or gas particle. 	The questions shall be answered in an interactive discussion. Make sure to get the correct concepts out of the learners by using art of questioning. The teacher can always insert reflection in every lesson or activity if s/he deems necessary not just at the end of the lessons.

IV. EVALUATING LEAR	NING: FORMATIVE ASSESSMENT AND TEACHER'S REFLECTION	NOTES TO TEACHERS
A. Evaluating Learning	 1. Formative Assessment 1. An unknown white substance is heated and produced white smoke and black solid. What do you think is this substance? a) a mixture b) an element c) a compound d) a diatomic molecule 2. Water is composed of two atoms of hydrogen and one atom of oxygen. Which of the following can be the particle model for water? Image: Composed of two atoms of hydrogen and one atom of oxygen. Which of the following can be the particle model for water? 3. What can you say about the movement (speed) of the particles of solid, liquid, and gas based on this model? a. The speed of the particles is the same in all states of matter. b. Solid particles are the fastest to move compared to liquid and gas. c) Gas particles are the fastest among solids and liquids. d) The speed of the particles is not affected by temperature. 	The teachers can employ the assessments and can give additional guide questions if s/he deems necessary. Have learners take this as a quiz. Answer Key: 1.C 2.C 3.C 4.A 5.C 6.D 7.C 8.D 9.C 10.A

 7. What is the movement of the particles in a gas? a) Not moving at all. b) Moving very slowly and tightly packed together. c) Moving rapidly with large spaces between them. d) Moving very slowly with large spaces between them. 8. Which has a direct relationship with temperature? a) Size of its particles. b) Shape of its particles. 	The teacher may opt to give homework if s/he thinks the competency is not yet mastered
 c) Type of intermolecular forces present. d) Average kinetic energy (speed) of its particles. 9. In the "Personal Space" mini-activity, how did the space between students change as they went from solid to liquid to gas? a) It decreased slightly. b) It remained the same. c) It increased significantly. d) It completely disappeared. 	
 10. The "Particle Dance Party" mini-activity demonstrated the relationship between temperature and particle motion according to KMT. As the music got faster, the particles (students) moved: a) Faster. b) Slower. c) The same. d) Erratically. 	
2. Homework (optional)	

B. Teacher's Remarks	Note observations on any of the following areas:	Effective Practices	Problems Encountered
	strategies explored		
	materials used		
	learner engagement/ interaction		
	Others		
C. Teacher's Reflection	Why did I teach th <u>students</u> What roles did my What did my stud <u>ways forward</u> What could I have		