

Lesson Exemplar in General Science

Lesson Exemplar for General Science Quarter 1: Unit 1

This material is intended exclusively for the use of senior high school teachers participating in the implementation of the Strengthened Senior High School Curriculum. It aims to assist in delivering the curriculum content, standards, and lesson competencies. Any unauthorized reproduction, distribution, modification, or utilization of this material beyond the designated scope is strictly prohibited and may result in appropriate legal actions and disciplinary measures.

Borrowed content included in this material are owned by their respective copyright holders. Every effort has been made to locate and obtain permission to use these materials from their respective copyright owners. The publisher and development team do not represent nor claim ownership over them.

Development Team			
Writer:	Shiela Marie S. Quiamson		
Consultant:	Alfons Jayson O. Pelgone, PhD Philippine Normal University		
Learning Area Specialists:	John Cyrus L. Doblada Danilo G. Soriano, Jr.		
Bureau of Learning Delivery Bureau of Curriculum Development Bureau of Learning Resources			

Every care has been taken to ensure the accuracy of the information provided in this material. For inquiries or feedback, please write or call the Office of the Director of the Bureau of Learning Resources via telephone numbers (02) 8634-1072 and 8631-6922 or by email at blr.od@deped.gov.ph.

LESSON EXEMPLAR			
Learning Area	General Science	Grade Level	11
Semester] st	Quarter	FIRST

I. OBJECTIVES (Identifying the Goals)			
Content Standard	By the end of this lesson, learners' efficiency of simple and compound machines can be improved by application of basic principles of physics.		
Performance Standard	By the end of the quarter, learners identify general physics principles and their applications in daily life. They use scientific principles to solve problems, make informed decisions, and illustrate the applications of physics for self, society, and the environment. They design simple and compound machines and hydraulic systems to demonstrate applications of force, torque, center of mass, and hydraulic-related principles. They evaluate energy-efficient practices in electricity supply and consumption at home, in local businesses and in exploring advantages and drawbacks of light and sound in medical imaging, security, communication and entertainment.		
Learning Competencies	By the end of this lesson, learners apply concepts of translational and rotational motion to design and build prototypes of efficient simple and compound machines.		
II. REFERENCES and MATERIALS (Selecting Resources and Material)	 Halliday, David, Robert Resnick, and Jearl Walker. Fundamentals of Physics. 11th ed. Hoboken, NJ: Wiley, 2018. Serway, Raymond A., and John W. Jewett Jr. <i>Physics for Scientists and Engineers</i>. 10th ed. Boston: Cengage Learning, 2019. Paredes, Rodrigo, and Jorge Angeles. 2020. "The Design of a Novel Pure-Rolling Transmission to Convert Rotational into Translational Motion." <i>Mechanism and Machine Theory</i> 148: 103782. https://doi.org/10.xxxx 		

	Norman, J., and A. L. Liddle. 2019. "Rotational and Translational Motion Interact Independently with Form." <i>Vision Research</i> 162: 81–91. https://doi.org/10.xxxx		
	Krynkin, Anton, Roger J. Sandberg, Paul D. Tait, and David M. J. S. Bowman. 2016. "Measuring Rotational and Translational Movements in Rotating Machines Using a Computer Vision Approach." <i>Journal of Mechanical Engineering Science</i> 230 (4): 610–623. https://doi.org/10.xxxx		
	The Physics Classroom. "Types of Motion." Accessed May 13, 2025. https://www.physicsclassroom.com		
	PhET Interactive Simulations. "Rotational Motion: Interactive Learning." University of Colorado Boulder. Accessed May 13, 2025. https://phet.colorado.edu/en/simulations		
	TED-Ed. "How Wind Turbines Work." Accessed May 13, 2025. https://shorturl.at/ZPxag		
	(These shall be accomplished per topic)		
III. CONTENT	Simple and compound machines		
(Sequencing Content)			
	By the end of this lesson, the learners should be able to:		
IV. OBJECTIVES (Setting Clear Objectives and Analyzing the Tasks)	• Define translational and rotational motion, as well as simple and compound machines, while recognizing their significance in daily life.		
	• Identify examples of translational and rotational motion and explain their role in the functioning of simple and compound machines.		
	• Show appreciation for motion principles by creating a simple or compound machine, demonstrating curiosity, teamwork, and perseverance.		
	• Construct and present a working prototype, showcasing its practical use and effectiveness.		

IV. PROCEDURES					ANNOTATION
	1. Activating Prio	r Knowledge			
	• Ask stude	Chart (Know, W nts to create a K	Vant to Know, L -W-L chart in th	earned) eir notebook w	th One practice that enables students to list prior
	three colu o K	mns: (Know) : List v	vhat you alrea	dy know abo	knowledge relevant to the learning skill is the KWL Chart . It allows the teacher to see what
A Activating Drive	 translational and rotational motion. W (Want to Know): Write any questions you have 		ve the students already know. As it helps the teacher contextualize activities and choose appropriate strategies that cater to the		
	 Ask the students to discuss their "K" and "W" entries with a partner or in small groups. 			students' responses on the KWL chart, especially in the first two columns, this is in line with the IDF-relevant section.	
Knowledge	• Throughout the lesson, let the students update the "L (Learned)" column with key takeaways.			"L	
	• At the end group befo	l, ask the learn ore reflecting indi	ers to share insi vidually.	ghts within th	eir
	Types of Motion	What I Know?	What I Want to Know?	What I have learned?	
	Translational				
Rotational					
Option 2: Motion in Everyday Life Discussion					

 Ask students to share examples of machines they frequently use (e.g., bicycles, fans, cars). Guide Questions: What are examples of machines you use every day? How do they function in terms of motion? Option 3: Brainstorming Group Activity The teacher will divide the students into small groups (choose a specific number based on class size) and provide each group with chart paper and markers for recording ideas. 	 (e.g., rotational motion in wheels, translational motion in elevators) and highlight the significance of motion in making tasks easier and improving efficiency. If possible, show simple machines in action or use illustrations. Allow students to demonstrate motions they observe in their surroundings. NOTE FOR TEACHERS: Explain that students will brainstorm in small groups to identify
 Each group will list different machines they frequently encounter at home, school, or in their community. The students will analyze how each machine moves and determine whether it uses rotational or translational motion (or both). Encourage discussion within groups and ensure everyone contributes. Guide Questions: What movements do these machines perform? 	 common machines and categorize them by motion type (rotational or translational). The teacher will suggest that students think beyond obvious examples—how do machines like escalators, wind turbines, or sewing machines apply motion? The teacher prompt groups with guiding questions

 How does this motion help the machine function? Each group present their findings to the class, explaining their reasoning for categorizing each machine. The teacher will allow students to compare results and refine their understanding of motion concepts. Establishing the Purpose of the Lesson After the conduct of the activities in activating prior knowledge, the teacher will ask the students about the relevance of having 	 The teacher will ask the students - how does understanding motion help improve machine design? The teacher will connect the activity to real-world applications, like engineering and technology advancements.
knowledge on translational motion and rotational motion.	
 The teacher will divide the class into three (3) groups. All the students will ask to watch the videos. Each group will be assigned to examine a specific video showing how translational and rotational motion are used by real-world machinery such as wind turbines, bicycles, and cranes, and thoroughly examine how these two motion types affect the equipment's function. 	 NOTE FOR TEACHERS: The teacher will begin by explaining that machines rely on different types of motion to function effectively. Introduce translational motion (straight-line movement) and rotational motion (circular movement).
 Each group will be guided by the following guide questions. Guide Questions: How Wind Turbines Work – TED-Ed Animation 1. What type of motion do the blades of a wind turbine exhibit? 	 State the goal: Students will analyze motion types in wind turbines, bicycles, and cranes using real-world examples. Show videos or pictures illustrating these applications to create context.

2. How does rotational motion in the blades convert into electrical energy?	1. How Wind Turbines Work – TED- Ed Animation
3. What role does wind speed play in the efficiency of the turbine's motion?	(<u>https://shorturl.at/ZPxag</u>) 2. Bike Wheel Experiment: Angular
4. Could a wind turbine function with only translational motion? Why or why not?	Momentum (https://shorturl.at/LlfNs)
• Bike Wheel Experiment: Angular Momentum	3. How Cranes Work – Animation
1. What type of motion does the bike wheel demonstrate?	(https://shorturl.at/sJB3I)
2. How does rotational motion influence balance and stability in bicycles?	
3. How do gears and pedals contribute to both translational and rotational motion in a bicycle?	
 How Cranes Work – Animation 	
1. What components of a crane use rotational motion?	
2. How does translational motion help crane lift and move heavy loads?	
3. Why is the combination of translational and rotational motion important in crane operation?	
4. How advancements in motion mechanics improved the efficiency and safety of cranes over time?	
	NOTE FOR TEACHERS:
Option 2: Inspire Innovation: Comparison from Old to Present Designs	• The teacher will begin by discussing the role of translational and rotational

• The teacher will divide the students into small groups and assign each group a specific machine type.	motion in engineering and design. Explain that students will compare past
• The teacher will provide students with the comparison readings showing old vs present designs for:	and present designs to see how motion mechanics have evolved.
1. Bicycle Design	• Set the goal : Identify how technological advancements have improved efficiency
2. Wind Turbines	and usability through motion principles.
3. Cranes and Lifting Machines	• Each group presents their findings, explaining key advancements.
4. Cars and Engines	• Encourage reflection: How could future
Guide Questions:	innovations use motion concepts even
1. How do old and new machine designs use rotational and	more effectively?
2 How do modern machines convert rotational motion into	• The teacher will wrap up by connecting
translational motion more efficiently?	motion principles to real-world problem- solving and creative design thinking.
3. What improvements in motion mechanics make modern machines better than older ones?	IDF RELEVANCE
	The IDF for these activities focuses on engaging
	students in analyzing translational and rotational motion in real-world applications
	and engineering innovations. The Real-World
	Applications activity uses videos and guided
	discussions to help students explore how
	motion affects the functionality of wind

		turbines, bicycles, and cranes. The Inspire Innovation activity encourages students to compare historical and modern machine designs, highlighting improvements in efficiency and usability through motion mechanics. Both approaches integrate active learning, collaboration, and real-world problem-solving, fostering critical thinking and creativity in technological advancements.
B. Instituting New Knowledge	 Presenting Examples Option 1: Demonstration of a Simple Machine: The Lever The teacher will prepare all the needed materials for the activity. A sturdy plank or ruler (lever) A block or small object (fulcrum) A weight (such as a book or small bag of sand) A handle or force application point (where students apply pressure) Introduce the concept Explain the basic parts of a lever: fulcrum, effort, and load. 	 NOTE FOR TEACHERS: The teacher will demonstrate a lever using a fulcrum, weight, and handle. Ask students to observe the transformation of forces through translational motion to lift the weight easily.

 lifting easier. Ask students to predict how shifting the fulcrum might affect force efficiency. Set Up the Demonstration Place the fulcrum (block or object) near the center or one end of the plank. Position the weight (load) on one side of the lever. Ask a student to apply force on the opposite end (handle) to lift the weight. 	 Ask students to identify examples of levers they encounter in daily life. Relate the activity to motion mechanics in machinery and construction. Wrap-Up & Reflection
 Observation and Discussion Have students observe how the force transforms through motion. Ask: Does moving the fulcrum closer to the weight make lifting easier? Discuss real-world examples like seesaws, crowbars, and scissors. Hands-On Application 	 Discuss: Why are levers important in engineering and everyday tools?

 Allow students to adjust the fulcrum's position and test different force applications. Encourage them to compare the effort required at different points. Option 2: Interactive Physics Simulations 	NOTE FOR TEACHERS:
 The teacher will ensure access to PhET or other online simulations that model motion principles. Provide students with devices (or pair them in groups if limited resources are available). Introduction and Learning Goals Explain the purpose of using simulations—to observe motion changes dynamically by adjusting variables. Define translational vs. rotational motion and highlight their real-world applications. Guided Exploration The teacher will demonstrate how to navigate the simulation interface. Show students how to adjust variables (force, mass, friction, etc.) and predict outcomes. Student Experimentation and Observation Allow students to test different settings and observe motion behaviors. Encourage them to identify patterns in translational and rotational effects. Have students record findings and compare cause-effect relationships. 	 Utilize digital simulations (like PhET) to showcase translational and rotational motions through interactive experiments. Allow students to manipulate variables and observe outcomes. The teacher will use the following PhET: https://phet.colorado.edu/en/simulati ons/rotation https://phet.colorado.edu/en/simulati ons/torque The teacher will shortly discuss how virtual simulations help visualize physics concepts. Ask students to relate findings to realworld machines (e.g., bicycles, gears, pulleys).

 Use guiding questions to deepen understanding: How does increasing mass affect translational motion? What happens when rotational speed increases? How do friction and external forces impact movement? 	• Assign a short reflection where students explain their observations in relation to engineering applications.
Ontion 3: Mechanical Toys Exploration	NOTE FOR TEACHERS:
Preparation and Setup	• The teacher will ask the students to bring in mechanical toys that utilize
• The teacher will gather mechanical toys that demonstrate both translational (linear) and rotational (circular) motion, such as:	both types of motion. Have students analyze and describe the movements happening in the toys and relate them
> Wind-up cars	back to concepts discussed in class.
 Spinning tops 	• For Wrap-Up & Reflection, the teacher will ask the students to summarize how
Gears and pulley toys	mechanical toys demonstrate fundamental principles of motion and
 Toy trains or vehicles with rotating wheels 	engineering design.
• The teacher will arrange a hands-on exploration station where students can freely interact with the toys.	• The teacher will challenge students to identify other objects in their daily lives that utilize both motion types.
Introduction and Learning Goals	• Consider assigning a creative follow-up:
 The teacher will begin by explaining the importance of mechanical motion in toys and everyday machines. 	Design a toy concept that effectively uses both rotational and translational motion.

	 The students will compare different toys and classify their motion types. 	
	 The teacher will lead a discussion on how these mechanical principles are applied in real-world machines like bicycles, cranes, or cars. 	
	 Ask students to think creatively: How could understanding motion lead to the design of better toys or machines? 	
	2. Discussing New Concept	
]	In this part, the teacher may provide students with reading materials that they can use in the conduct of the selected activity.	
(Option 1: Peer Teaching	NOTE FOR TEACHERS:
	Introduction and Group Formation	• This task requires students to conduct
	• The teacher will begin by explaining the peer teaching method—students will work in pairs to research and teach the class about a machine.	research on a simple or compound machine in pairs, produce a brief presentation, and share their results with the class. In addition to improving
	 Clarify the difference between simple machines (one mechanism) and compound machines (multiple working parts). 	their presentation and teaching abilities, this will assist students gain a deeper grasp of how various machines
	 Assign or allow students to choose their machine to research. 	translational and rotational motion.

Research and Preparation	• Assign a follow-up task: How would you
 The teacher will provide students with reliable sources (textbooks, websites, simulation tools like PhET). 	modify or improve your machine using motion principles?
 Instruct pairs to investigate how their machine utilizes translational and rotational motion. 	• The teacher will summarize key insights, emphasizing the role of motion in mechanical efficiency and discuss
 Have each group prepare a short presentation (3-5 minutes) with: 	how innovations in machine design improve real-world applications.
 A basic explanation of how the machine works Examples of real-world applications A visual aid (drawing, model, or digital slide) Presentation and Demonstration 	
 Each pair presents their findings to the class, explaining the motion principles involved. Encourage students to ask questions after each presentation. If possible, allow groups to demonstrate the machine physically or using simulations. 	
Option 2: Group Discussion on Forces	
Introduction and Concept Explanation	
 The students will define translational motion (linear movement) and rotational motion (circular movement). The teacher will introduce key forces acting on machines: 	

	NOTE FOR TEACHERS:
Friction: Resistance that slows motion.	• The teacher will lead a discussion
➤ Weight: Force due to gravity affecting	centered around the forces acting on
movement.	motion. Use examples of friction, weight
Tension: Force applied through cables, ropes,	and tension, torque to illustrate
or strings.	concepts using guiding questions to
Torque: Rotational force affecting spinning objects.	facilitate dialogue. Students will investigate how forces like friction, gravity, and tension affect the motion of
• Set the discussion goal: Students will analyze how	actual devices like wind turbines,
these forces shape machine efficiency and motion.	bicycles, and cranes.
Guided Discussion Using Real-World Examples	• The teacher will assign a follow-up task:
 Divide the class into small groups and assign each force to a group to explore. 	Find a machine in daily life and identify which forces influence its motion.
• Present everyday machines that experience these	IDE DELEVANCE
forces, such as:	This Instructional Design Framework (IDF)
 Friction: Bicycle gears, car brakes, or conveyor 	promotes active learning, collaboration, and
belts.	critical thinking through two structured
➤ Weight: Elevator systems, cranes lifting	activities. The Peer Teaching method engages
materials.	students in researching and presenting
Tension: Pulley systems, suspension bridges.	machines, reinforcing their understanding of

	 Torque: Wind turbine blades, rotating bicycle wheels. 	translational and rotational motion through hands-on explanation and demonstration. The
• Use (Guiding Questions to Facilitate Dialogue:	Group Discussion on Forces deepens comprehension by exploring friction, weight,
0	Friction: <i>How does friction help or hinder machine performance?</i>	tension, and torque, using real-world examples and guiding questions to facilitate dialogue and
0	Weight: Why must engineers consider weight when designing mechanical systems?	analysis. Both activities encourage student engagement, knowledge application, and inquiry-based learning , helping learners
0	Tension: How do tension forces contribute to motion stability in machines?	connect motion principles to engineering and everyday applications.
0	Torque: What factors influence torque in rotational systems?	
• Enco	urage Peer Interaction and Critical Thinking	
0	Have each group discuss and analyze how their assigned force affects motion.	
0	Ask groups to present key insights to the class, demonstrating examples of force interaction.	
0	Encourage debate: <i>How could reducing or increasing</i> each force improve efficiency?	
3. Developir	ng Mastery	
Option 1: N	Iotion Analysis Assignment	

 The students will observe and analyze a simple machine (such as a bicycle or wind-up toy) in their daily environment, collecting data on translational and rotational motion and the forces affecting movement. Introduction and Assignment Explanation 	
 The teacher will begin by reviewing motion principles, defining translational (linear) and rotational (circular) motion. Explain the assignment: Students will observe, analyze, and diagram the motion of a simple machine found at home or in daily life. 	 NOTE FOR TEACHERS: This activity aims to get students to watch and examine how a simple machine (such a bicycle or a wind-up toy) works in their daily lives. In order to strengthen their grasp of motion principles, students will gather data on
 Selecting a Machine and Observing Motion Ask students to choose a simple machine they frequently encounter, such as: 	translational and rotational motion, examine the forces at work, and present their results using diagrams through a home experiment.
 Bicycle - Observe the wheels (rotational motion) and forward movement (translational motion). Wind-Up Toy - Analyze how gears rotate and drive motion in a straight line. Scissors or Lever - Examine force application and movement efficiency 	 Connect the assignment to mechanical innovations and real-world applications.

Data Collection and Motion Analysis	• Please see the prepared learning
 Guide students to record: 	activity sheet entitled "Motion Analysis Assignment".
1. Which parts of the machine move in translational motion?	• In grading this activity, see the attached rubric on page 28.
2. Which parts rotate, and how does rotational motion contribute to function?	
3. What forces (friction, weight, tension, torque)	IDF RELEVANCE
affect movement efficiency?	This activity encourages critical thinking,
Diagram and Presentation Preparation	helping students visualize physics in action.
 Have students create labeled motion diagrams of their chosen machine. 	
• Encourage them to explain:	
1. How motion types contribute to functionality?	
2. What improvements could be made to enhance efficiency?	
Class Discussion and Reflection	
 Students present their observations and findings to the class. 	

	• Facilitate a discussion: <i>How do these motion principles</i> <i>apply to larger machines in engineering?</i>	
	1. Finding Practical Application	
C. Demonstrating Knowledge and Skills	 Finding Practical Application Machine Dissection The teacher will divide the students into small groups (3-5 members per team). Each group will choose a format on how they will present their findings: 	 NOTE FOR TEACHERS: The teacher will inform students in advance to bring an old, non-functioning machine (e.g., clocks, toys, kitchen appliances). Arrange workstations with basic tools (screwdrivers, pliers, gloves). Ensure safety guidelines are discussed before handling materials. Discuss how motion principles guide engineering designs. Relate findings to real-world applications in technology and mechanics. Encourage students to reflect: How would you improve the machine's efficiency using motion principles?
	path (e.g., sliding gears, pistons).	

 Rotational Motion: Circular movement (e.g., gears, wheels, rotating motors). 	• Please see the attached rubric for the "Machine Dissection Activity" on		
 Set expectations for observing, labeling, and recording findings. 	page 29.		
Group Formation and Machine Disassembly	IDF RELEVANCE		
 Each group carefully disassembles their machine, documenting the process. 	This hands-on activity fosters critical thinking, collaboration, and real-world engineering		
• Guide them to label parts and categorize motion types.	connections, helping students visualize motion mechanics through practical exploration.		
Analysis and Reflection			
 Ask guiding questions: 			
> Which components exhibit translational motion?			
How do rotational parts affect movement efficiency?			
What forces (friction, torque) influence the machine's functionality?			
 Encourage groups to compare similarities and differences between machines. 			
2. Making Generalization	After then, the lesson shifts to synthesis and individual learning integration. Students go over and finish the "What I Learned" portion of		

Option 1: KWL	Continuation			their KWL Chart in Option 1: KWL
The students wi What I Learned takeaways from	Il continue filling 1 column. In th the lesson using	g the last part of is part, they wig the table:	their KWL Chart- ll summarize key	Continuation. By assisting students in solidifying their comprehension and visualizing their learning progress, this structured
TypesofMotionTranslational	What I Know? Objects move in a straight line or along a path without rotating	What I Want to Know? How does translational motion apply to machines in everyday life?	What I have learned? Translational motion helps in transportation.	reflection fosters metacognitive development. Additionally, it improves the ability to evaluate oneself, which is essential in technical and safety-oriented education. The KWL exercise is a low-stakes but effective reflective assessment technique that corresponds with the ADDIE model's Evaluation stage
Rotational	Objects spin around an axis, like wheels or gears	How does rotational motion contribute to machine efficiency and power generation?	Rotational motion is essential in machines like wind turbines, bicycles, etc.	
Option 2: Conc • The teach rotational difference functional	ept Mapping her will ask the s l motion and give es, focusing on lity.	tudents to define real-world exam how motion in	e translational and ples. Discuss their fluences machine	 NOTE FOR TEACHER: The teacher will introduce concept mapping as a visual way to organize ideas.

	Provide guiding questions:	• Divide students into pairs or small
	 How does translational motion differ from rotational motion? 	groups to brainstorm and organize ideas.
	• What machines rely on each type of motion?	 Instruct students to create a comparison chart, dividing sections
	 How do forces interact with both motion types? 	into:
	Presentation and Class Discussion	• Definition: Explain each motion
	 Each group presents their concept map to the class, explaining their connections. 	 Examples: List everyday object demonstrating these motions.
	 Facilitate peer questions and discussions: 	 Machine Applications: Identify engineering uses, such as
	Which machines combine both motions?	pulleys, wheels, and turbines.Encourage them to add arrows, links.
	How do engineers optimize motion for efficiency?	and annotations showing how both
	• Assign a reflection task , asking students to consider: <i>How</i>	motions interact.
	could understanding motion principles improve machine design?	• Ask students to highlight key forces affecting each motion (e.g., friction,
	Option 3: Reflection Journals	torque, gravity).
	• The students will write reflections on what they learned about	
translational and rotational motion, summarizing key takeaways and generalizing principles for future applications.		NOTE FOR TEACHERS:
		• Provide students with time at the end of
	 Guide Questions: 	each class to write reflections on what they learned about translational and

 What is the most important concept you learned today? How does translational or rotational motion apply to machines you use daily? What principles from today's lesson could help in designing better technology? 	rotational motion. Ask them to generalize a principle or concept that they can apply to future tasks. Allocate 5-10 minutes at the end of class for students to write their reflections. Encourage clear organization, using headers such as:
How did this lesson change your understanding of motion and forces?	 Key Lesson Takeaways – Briefly summarize the main motion concepts learned.
	 Real-World Applications – Describe where they see these principles in action.
3. Evaluating Learning Option 1: Self-Assessment	 Future Connections – Predict how motion principles might help in future challenges.
 Provide students with a structured questionnaire that includes: 	
 Concept Understanding: Can I clearly define translational and rotational motion? Can I identify real-world examples of each motion type? Do I understand how forces (torque, friction, gravity, affect motion? 	 NOTE FOR TEACHERS: Explain the importance of self-reflection in learning, helping students gauge their comprehension of motion principles.

• Set expectations: This is a personal 2. Application of Concepts: • Can I explain how motion principles improve machine efficiency? need to revisit. • Can I analyze how motion contributes to engineering advancements? • Am I able to describe how machines integrate both learning. motions? 3. Confidence Level and Areas for Growth: Which motion concept do I feel most confident in? 0 clarification on. What specific topic do I need to review or understand 0 *better?* What strategies can help me strengthen my 0 understanding? **Option 2: Exit Ticket**

At the end of the lesson, students submit an exit ticket responding to the question: "How do translational and rotational motions work together in machines?"

Review Before Submission

Before answering, guide a short class discussion on 0 examples:

evaluation, designed to help students recognize what they know and what they

- Allocate **10–15 minutes** for students to answer honestly and reflect on their
- Encourage students to write down examples or concepts they need

NOTE FOR TEACHER:

• Explain that this quick reflection helps gauge student comprehension of motion concepts.

 > Bicycles: Rotational motion in the wheels creates translational movement forward. > Wind Turbines: Rotational blades convert energy into usable electrical motion. > Cars: Rotational motion in the wheels enables linear movement. 	 Encourage students to think critically about how machines integrate both types of motion. Gather responses to analyze understanding trends (strengths, misconceptions, gaps).
 Writing the Exit Ticket Response Provide students with index cards, paper slips, or digital forms to submit answers. 	• Use student answers to guide future lessons or clarifications on motion principles.
 Instruct them to write a concise response (2–3 sentences) explaining: 	
 How both motions interact in a machine of their choice Why combining motion types improves functionality 	
 4. Additional Activity Case Study Analysis: Motion-Based Innovations The teacher will provide students with relevant resources (articles, engineering reports, or video documentaries). 	

Divide students into small groups (3–5 member)	ers per team). NOTE FOR TEACHERS:
• Instruct students to investigate their case stud	Assign a case study on an invention that improved efficiency through the
 How motion principles influence improvements? 	ed efficiency application of motion principles. Groups will present their findings to the class.
 What forces (friction, torque, tension) functionality 	• Select or allow students to choose a motion-based invention, such as:
 How the invention evolved over time 	 Wind turbines – Efficiency in energy generation.
• The teacher will encourage the students to gather key findings, and historical comparisons.	ther diagrams, • Bicycles – Optimization of rotational motion for speed and
 Guide each group to structure their 5–7-minut including: 	e presentation, o Hydraulic cranes – Translational
 Overview of the invention and its purpose 	se and rotational integration for lifting heavy loads.
 How translational and rotational motion 	were applied • Conveyor belts - Motion
\circ What design changes led to efficiency in	nprovements mechanics for industrial efficiency.
 Visual representation (graphs, diagra slides) 	• Summarize key takeaways from each
• Each team presents their case study findings.	case study.
• Encourage peer engagement by allowing class questions.	Relate findings to modern-day engineering challenges and future innovations.

	• Facilitate a discussion: <i>How do motion principles drive</i> engineering advancements?	• Assign a follow-up task: How could motion principles be applied to solve current efficiency problems in technology?					
	Performance Task						
	*(The teacher can integrate this performance task in the next lesson for	cused on efficiency)					
	Engineering Motion: Building Efficient Machines						
	The learners will work in small groups to design, build, and test a working prototype of a simple or compound machine that demonstrates both translational and rotational motion. They will then explain the physics behind the motion of their machine and reflect on its efficiency.						
V. ASSESSMENT	Materials (Suggested)						
(Assessing Learnings)	• Cardboard, wood, strings, pulleys, rubber bands						
	• Screws, nails, glue, hot glue gun						
	• Plastic wheels, gears, syringes (for hydraulics)						
	Rulers, protractors, stopwatch, weights						
	 (Students are encouraged to reuse/recycle materials as much a 	s possible.)					
	Before the Activity						
	1. Review the Concepts:						
	 Quick recap of rotational motion 						

• Ouick recap of translational motion
• Introduce types of simple machines (lever, pulley, inclined plane, wheel and axle, wedge, screw)
 Explain compound machines and examples
2. Form Student Groups:
• Assign or let students form groups of 3–5
 Each group should have mixed strengths (builders, thinkers, writers)
 Provide guidelines
During the Activity
• Over 2–3 class sessions (or assigned as a project over 1–2 weeks):
Allow time for designing, building, and testing
Encourage iteration (test, observe, improve)
 Walk around to ask probing questions and ensure concepts are applied
After the Activity
• Each group submits:
 Prototype (demonstrated in class or through video)
 Written Report
• Presentation
Requirements
1. Must include:

	 At least one rotating component (wheel, gear, pulley, etc.)
	• At least one translational component (sliding, pushing, lifting, etc.)
	 At least one simple machine (lever, pulley, etc.)
2.	Must accomplish a useful task , such as:
	 Lifting a weight
	 Moving an object
	 Launching something
3.	Use recycled or low-cost materials
Deliv	erables
1.	Prototype (presented in class or video demonstration)
2.	Written Report (2–3 pages) with:
	 Description and labeled diagram of your machine
	 Explanation of how it works using physics terms
	 Calculations of force, torque, efficiency (if applicable)
	 Reflection on design process and teamwork
3.	Short Group Presentation (3–5 minutes):
	• Show the working prototype
	• Explain how translational and rotational motion are involved
	-

Republic of the Philippines

Department of Education BUREAU OF LEARNING DELIVERY

Criteria	4 - Excellent	3 - Proficient	2 - Developing	1 - Needs Improvement
Prototype Design and Construction	Machine is well- constructed, sturdy, and demonstrates a high level of craftsmanship using appropriate materials.	Machine is functional, mostly sturdy, with good material usage, though minor flaws exist.	Machine is partially functional, but construction has weaknesses affecting performance.	Machine is unstable, poorly assembled, or fails to function as intended.
Motion Integration and Functionality	Clearly demonstrates both translational and rotational motion with strong alignment to physics principles.	Shows both motion types but may lack full precision or consistency in demonstration.	Displays motion types inconsistently or with unclear physics connections.	Motion types are not properly demonstrated or missing entirely.
Innovation and Problem-Solving	Highly original design; effectively incorporates creativity and engineering concepts. Shows strong problem- solving ability during testing and refinement.	Design is innovative with practical improvements; problems are mostly addressed successfully.	Design is somewhat creative, but problem-solving approach lacks depth or execution.	Shows minimal creativity or effort in troubleshooting; no significant improvements made.

	Thorough, well-	Clear and	well-	Report is	basic;	Report is	s poorly
	structured, includes	organized, ii	ncludes	diagrams	or	structured	lacks
Written Report	clear diagrams,	diagrams	and	explanations	are	clarity, or	missing
Quality	accurate physics	explanations,	though	incomplete	or	required	
	explanations, and	some details	s lack	unclear.		component	s.
	insightful reflection.	depth.					
	Engaging and well-	Presentation	is	Presentation	lacks	Presentatio	n is
	organized	structured an	nd clear,	clarity or con	nfidence,	disorganize	ed,
Presentation and	presentation with	though may	y lack	with	minimal	unclear, o	r missing
Communication	confident	engagement	or	supporting		key explan	ations.
	explanation and	supporting vis	suals.	materials.			
	strong visual aids.						
Summative Assessment: The students will be assessed through a summative assessment. The teacher may opt to use Multiple Choice items, or open-ended questions.							
Multiple Choice: Read each question carefully and choose the best answer.							
1. Which of the followin	1. Which of the following best describes rotational motion?						
A. An object moves along a straight path			th B. An object vibrates in place				
C. An object spir	C. An object spins around a fixed axis			ect stays at re	st		
2. What type of simple	machine is a lever?						
A. A wheel with a	A. A wheel with a rope				B. A rigid bar that pivots on a fulcrum		
C. A flat surface	Ľ	D. A circu	ılar ramp				

3. Which parts of a bicycle demonstrate both rotational and translational motion?					
A. Frame and handlebar	B. Seat and pedals				
C. Wheels and chain	D. Bell and lights				
4. Which of the following are examples of translational mot	tion?				
A. Clock hand turning	B. Car driving on a highway				
C. Blender spinning	D. Ceiling fan rotating				
5. Why is it more efficient to use a wheelbarrow (compound	d machine) than to carry heavy loads by hand?				
A. It has a nice design	B. It is fun to use				
C. It combines simple machines to reduce effort	D. It can only be used by adults				
6. How do gears contribute to the efficiency of a compound	1 machine?				
A. They slow down the machine	B. They transfer rotational motion to different parts				
C. They stop friction completely	D. They change color under pressure				
7. A crane uses both rotational and translational motion. Which parts represent each?					
A. The hook rotates; the boom slides					
B. The base rotates; the arm lifts and moves loads v	vertically				
C. The tires rotate; the seat vibrates					
D. The cable rotates; the hook rests					
8. Which improvement could best increase the energy efficiency of a wind turbine?					
A. Using heavier blades	B. Designing blades with optimized shape for wind flow				
C. Removing the rotor entirely	D. Painting it a darker color				
9. If a group is building a prototype machine that lifts obje	ects using both types of motion, what would be the best				
design feature?					

A. (Only one whe	el to reduce complexity	B. Fixed parts with no moving elements
C. 1	Rotating gears	s connected to a sliding arm	D. Lightweight decoration only
10. Why is	s understandi	ng motion important in designin	g machines for real-world applications?
Å. '	Го impress en	gineers	B. To reduce energy use and improve functionality
C. ′	Fo follow trad	ition	D. To make machines more colorful
Answer K	ey:		
ITEM	ANSWER		RATIONALIZATION
1	С	Rotational motion involves an translational motion, which in	object turning around an internal or external axis, unlike volves straight-line movement.
2	В	A lever is a straight, rigid bar loads.	that rotates around a fixed point (fulcrum) to lift or move
3	С	The bicycle wheels rotate (rot motion); the chain rotates to tr	tational motion) and drive the bike forward (translational cansfer force.
4	В	A car moves from one point translational motion.	to another in a straight path, which is the definition of
5	С	A wheelbarrow is a compound reducing the force needed.	d machine using wheel and axle (rotation) and lever (lift),
6	В	Gears redirect or amplify rotati machines.	onal motion, improving performance and control in complex
7	В	Cranes rotate at the base for	r positioning and use translational motion in the arm to

lift/lower loads.

	8	В	Aerodynamic blade design maximizes wind capture and rotation, increasing the conversion of wind energy to electricity.
	9 C A tra		A rotating gear system combined with a sliding mechanism integrates both rotational and translational motion effectively.
	10	В	Applying motion principles enables engineers to create efficient, effective machines that use less energy and perform better.
VI. REFLECTION (Feedback and Continuous Improvement)	Teachers o encouraged objectives.	can take note d to record rel	e tasks that will be continued the next day or additional activities needed. They are also evant observations or any critical teaching events that influence on the attainment of the lesson

Prepared by:

Reviewed by:

JOHN-JOHN Q. GARCIA

Assistant Principal II

Approved by:

ALFONS JAYSON O. PELGONE, PhD

Philippine Normal University, Manila

General Science Quarter 1

JOHN CYRUS L. DOBLADA General Science Specialist

BLD-TLD

Motion Analysis Assignment Rubric

Criteria	4 - Excellent	3 - Proficient	2 - Developing	1 - Needs Improvement
Observation and Data Collection	Data is comprehensive, accurate, and clearly organized; observations show deep attention to motion details.	Data is mostly accurate and well-organized; observations demonstrate a solid understanding of motion.	Data has some inaccuracies or is incomplete; observations lack clarity or depth.	Data is largely incorrect or missing; observations are unclear or insufficient.

Motion Analysis and Concept Understanding	Demonstrates a strong grasp of motion concepts, making insightful connections to real- world applications.	Shows good understanding with relevant analysis, though connections may lack depth.	Displayspartialunderstanding withsomemisinterpretationsormissing details.	Showsminimalunderstanding,withsignificant errors or lackof analysis.
Diagram and Labeling	Diagrams are clear, well- structured, and accurately labeled to represent motion concepts.	Diagrams are well-labeled but may lack precision or clarity in some areas.	Diagrams are basic, with some labeling errors or unclear representation of motion.	Diagramsareincomplete,poorlylabeled,oressential details.
Presentation and Explanation	Explanation is highly engaging, articulate, and well- supported by evidence; demonstrates confidence.	Explanation is clear and organized, though may lack depth or engagement.	Explanation is somewhat unclear or disorganized, missing supporting details.	Explanation is difficult to follow, lacks clarity, and does not support findings.
Application and Reflection	Thoughtfulreflectiononmotionconcepts,demonstratingstrongconnectionstoreal-worldimplications.	Reflection includes relevant applications but may lack deeper insights.	Reflection is basic, with limited connection to practical applications.	Reflection is superficial or missing, with little effort to apply concepts.

Machine Dissection Rubric

Criteria	4 - Excellent	3 - Proficient	2 - Developing	1 - Needs Improvement
Introduction and Concept Explanation	Clearly demonstrates deep understanding of motion concepts, explaining translational and rotational motion with precision.	Shows good grasp of motion concepts, with explanations that are mostly clear and accurate.	Displays basic understanding but lacks depth; explanations may have minor errors.	Shows little understanding of motion concepts, with unclear or inaccurate explanations.

Group Formation and Machine Disassembly	Works effectively in a group, carefully disassembling the machine while thoroughly documenting and labeling	Collaborateswell,disassemblesmachinesuccessfully,butdocumentationorlabeling	Participatesindisassemblybutdocumentationisincompleteorlacks	Struggles with teamwork or documentation; disassembly lacks care or accuracy.
Analysis and Reflection	components. Thoughtful, detailed responses to guiding questions; makes strong connections to motion principles and efficiency.	lacks some detail.Providesreasonableresponsestoguidingquestions,showingunderstandingofconcepts.	organization. Responses are basic, missing deeper analysis; connections to motion principles are unclear.	Responses are incomplete or inaccurate, showing little effort in analysis and reflection.
Creative Presentation	Engaging, well-structured presentation with clear explanations and strong visual or demonstrative elements.	Presentation is clear and informative but lacks originality or depth.	Presentation is somewhat unclear or lacks strong supporting visuals and explanations.	Presentation is disorganized or missing essential components, making findings difficult to understand.