Name:_____

Date:_____ Score:_____

Describing a Mathematical System

angle		parallel lines	point	right angle
line		perpendicular lines	postulates	theorems
line se	gment	plane	ray	undefined terms
1. A	ł	nas no dimension. It has an e	xact location in space	
2. An	i	s a figure formed by two none	collinear rays with a c	ommon endpoint called the
vertex.				
3. Two line	es that inte	rsect which form right angles	are called	
4. Stateme	ents prover	n from definitions, postulates,	or using operations fr	om facts that were already know
are call	ed			
5. A	i	s a collection of points along	a straight path that ex	tends endlessly in both
directio	ns.			
6. An angl	le whose m	easure is exactly 90° is called	d a	
7. Stateme	ents that ar	e assum <mark>ed to</mark> be true without	proof are called	
8. A	e>	ctends infinitely in two dimens	ions. It has no thickne	ess and is named by three points
that do	not lie on th	ne same line.		
9. A		is a part of a line having tw	vo endpoints.	
10. Two lir	nes that lie	in the same plane and do not	intersect are called _	
DIRECTIC	NS: Under	line the statement, group of v	vords, or phrases that	describe a component of a
	ical system	. Identify the component you	underlined and write	your answer on the space
mathemati	efore each	number.		
		a City is known as the Shoe (Capital of the Philippir	nes.
	_1. Marikin			
	_	people believe that COVID-19	is not a deadly virus.	
	_2. Some p	•	-	at extends infinitely more than
	_2. Some p _3. If you s	hoot a laser towards the sky	-	
provided b	_2. Some p _3. If you s red eye can	hoot a laser towards the sky	you can see a line tha	at extends infinitely more than

Mathematical System: Postulates and Proof

C. DIRECTION: Identify the properties exhibited in each item.

1. If x + y = 3, then x + y - 3 = 0	
2. If a + b = c and c - 7 = d, then (a + b) - 7 = d	
3. If $\frac{m}{4} = 5$, then m = 20	_
4. If k + 9 = 9, then 9 = k + 9.	_
5. If $12xy = x - y + 5$, then $x - y + 5 = 12xy$	
6. If $x - 100 = y + 10$, then $x = y + 110$	_
7. If $7xy = 49x^2$ and $x \neq 0$, then $y = 7x$	
8. If 2xy(x + 3y - 1), then 2x ² y + 6xy ² – 2xy	
9. $\angle x = \angle x$	
10. If 2x + 7y = 3z and 3z = 2y + 5, then 2x + 7y = 2y + 5	

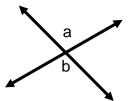
D. DIRECTION: Complete the given two-column proof with the correct property.

Given: 4(2x + y - 3) = 10x + 2y

Prove: y = x + 6

Statement	Reason
1. 4 $(2x + y - 3) = 10x + 2y$	GIVEN
2. $8x + 4y - 12 = 10x + 2y$	
3. $8x + 4y = 10x + 2y + 12$	
4. $4y = 2x + 2y + 12$	
5. 2y = 2x + 12	
6. y = x + 6	

Specific Week: Week 2


Target Competency: illustrates the need for an axiomatic structure of a mathematical system in general, and in Geometry in particular: (a) defined terms; (b) undefined terms; (c) postulates; and (d) theorems. **Note to the Teacher:** This is a summative assessment.

Learning Activity Sheets (LAS)

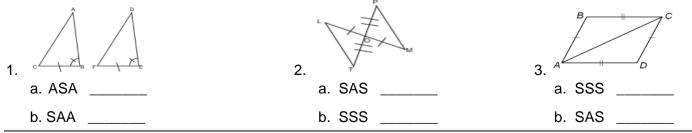
Grade 8 - Mathematics

Given: $\angle a$ and $\angle b$ are vertical angles.

Prove: $\angle a \cong \angle b$



	Statement	Reason
1. ∠a	a and ∠b are vertical angles	GIVEN
2.		
3.		
4.	(P)	
5.		A AS RICH
6.		


E. Analyze the way of transformation in each figure to show congruency. Distinguish if it is ROTATION, TRANSLATION or REFLECTION.

F. Tell which postulate will conclude that the following pairs of triangles are congruent.

G. Determine the additional corresponding parts needed to make the triangles congruent by using the specified congruence postulates.

Specific Week: Week 2

Target Competency: illustrates the need for an axiomatic structure of a mathematical system in general, and in Geometry in particular: (a) defined terms; (b) undefined terms; (c) postulates; and (d) theorems; illustrate triangle congruence; and illustrate the SAS, ASA and SSS congruence postulates. **Note to the Teacher:** This is a summative assessment.

Learning Activity Sheets (LAS)

H. Encircle the letter of your answer.							
1. If $\triangle PGO \cong \triangle SRO$, a. \overline{PG}	what is the side correspondi b. \overline{RO}	ng to \overline{GO} ? c. \overline{SO}	d. SR				
2. In ∆CAR, which an a. ∠A	gle is between \overrightarrow{RC} and \overrightarrow{RA} ? b. $\angle C$	c. ∠R	d. none				
3. Given in ∆RPO, <i>RI</i> a. 20	$\overline{P} = \overline{RO}$. If m∠P = 80, find the b. 80	measure of ∠R. c. 100	d. 180				
4. If $\Delta FRY \cong \Delta DRY$, w a. $\overline{FY} \cong \overline{RY}$	vhat congruent part shows re b. $\overline{RY} \cong \overline{RY}$	eflexive property? c. $\overline{\text{YR}} \cong \overline{\text{YD}}$	d. $\overline{\text{RF}} \cong \overline{\text{RD}}$				
5. Complete the state a. $\overline{\text{RE}} \cong \overline{\text{OP}}$	ement by symmetric property b. $\overline{\text{ER}} \cong \overline{\text{PO}}$: If $\overline{\text{RE}} \cong \overline{\text{PO}}$, then c. $\overline{\text{PO}} \cong \overline{\text{RE}}$	d. $\overline{\text{RE}} \cong \overline{\text{PO}}$				
6. What angle in ΔTA a. ∠TAR	R is congruent to ∠JYA if ΔJA b. ∠RAT	$\Delta Y \cong \Delta ANE and \Delta ANE c. ∠TRA$	$\simeq \Delta TAR?$ d. $\angle ATR$				
7. What side in $\triangle QUE$ is congruent to \overline{FA} if $\triangle FAY \cong \triangle BOL$ and $\triangle BOL \cong \triangle QUE?$							
a. UE	b. EU	c. QE	d. QU				
8. If $\Delta ZAP \cong \Delta BOR$, which congruency statement is true?							
a. $\overline{ZP} \cong \overline{OR}$	b. $\angle APZ \cong \angle ROB$	c. ∠PAZ \cong ∠ROB	d. $\overline{ZA} \cong \overline{OR}$				
9. If $\triangle ABC$ and $\triangle ZTE$ are congruent by SAS Postulate, what congruency statement is needed if $\overline{AB} \cong \overline{ZT}$ and $\overline{BC} \cong \overline{TE}$?							
a. ∠B ≅ ∠T	b. $\angle A \cong \angle Z$	$c. \angle C \cong \angle E$	d. $\angle A \cong \angle T$				

10. ΔABC and ΔCDA are congruent by what postulate or theorem?a. SASb. ASAc. AASd. SSS

Specific Week: Week 2 Target Competency: illustrate triangle congruence; and illustrate the SAS, ASA and SSS congruence postulates. Note to the Teacher: This is a summative assessment.