Name:	Date:	Score:

PROVING TWO TRIANGLES ARE CONGRUENT

Problem 1

Given: $\overline{AC} \cong \overline{BC}$, D is the midpoint of \overline{AB}

Prove: $\Delta ACD \cong \Delta BCD$

Proof:

Statements	Reasons
1.	1. Given
2.	2. Given
3≅	3.
<i>4.</i> ≅	4.
5. $\triangle ACD \cong \triangle BCD$	5. AS RICA

Problem 2

Given: \overline{AC} and \overline{DF} , bisect each other at E

Prove: $\Delta DEA \cong \Delta FEC$

Proof:

Statements	Reasons
1.	1. Given
2.	2. Segment bisector→
3≅	3→
<i>4.</i> ≅	4
<i>5.</i> ≅	5.
6. $\Delta DEA \cong \Delta FEC$	6.

Specific Week: Week 6

Target Competency: Proves two triangles are congruent. **Note to the Teacher:** This is a summative assessment.

Problem 3

Given: $\overline{SR} \perp \overline{RT}, \overline{TU} \perp \overline{US}, \angle STR \cong \angle TSU$

Prove: $\Delta TRS \cong \Delta SUT$

Proof:

Statements	Reasons
1.	1. Given
2.	2. Given
3.	3. ————————————————————————————————————
<i>4.</i> ≅	4. 36
5≅	5.
6. $\Delta TRS \cong \Delta SUT$	6. Som 152

Problem 4

Given: $\angle 3 \cong \angle 6$, $\overline{KR} \cong \overline{PR}$, $\angle KRO \cong \angle PRM$

Prove: $\Delta KRM \cong \Delta PRO$

Proof:

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

Problem 5

Given: $\overline{FA} \perp \overline{AD}$, $\overline{ED} \perp \overline{AD}$ and $\overline{AC} \cong \overline{DB}$, $\angle F \cong \angle E$

Prove: $\triangle ABF \cong \triangle DCE$

Proof:

	Statements	Reasons
1.		
2.		2.
3.		S. S
4.		4.
5.		5. 56
6.		6.

Proving Statements on Triangle Congruence

A. Based on the given triangles, (a) name the triangles that are congruent, (b) give the postulate/theorem that satisfy it and (c) name the other pairs of corresponding congruent parts.

1. A B

a. ___

b. _____

2.

.

a. _____

б. _____

3.

а

b. _____

•

a.

b. _____

C. _____

5.

a. _____ o. ____

_

Specific Week: Week 6

Target Competency: Proves two triangles are congruent. **Note to the Teacher:** This is a summative assessment.

B. Complete the two-column proof.

1. Given: $\angle R \cong \angle T$, $\angle W \cong \angle V$ $\overline{RW} \cong \overline{TV}$

Prove: $\angle RSW \cong \angle TSV$

Statements	Reasons
1. $\angle R \cong \angle T$	1. Given
$2. \overline{RW} \cong \overline{TV}$	2. Given
$3. \angle W \cong \angle V$	3. Given
4. <u>(a)</u>	4(b)
0F82	5. CPCTC

2. Given: $\overline{GK} \perp \overline{LJ}, \overline{HK} \cong \overline{KJ}$ $\overline{GK} \cong \overline{LK}$

Prove: $\angle G \cong \angle L$

Statements	Reasons
1. $\overline{HK} \cong \overline{KJ}$	1. Given
$2.\overline{GK} \perp \overline{LJ}$	2. Given
3. ∠LKH & ∠GKJ are right angles	Definition of Perpendicular Lines
$3. \angle LKH \cong \angle GKJ$	
	3. <u>(a)</u>
$4. \overline{GK} \cong \overline{LK}$	4. Given
5. <u>(b)</u>	5(c)
$6. \ \angle G \cong \angle L$	6(d)