I. Expectations:

After going through this module, you are expected to:

- 1. apply the theorems to show that given triangles are similar ;
- 2. solve problems that involve triangle similarity and right triangle.

II. Pre – Test:

Directions: Choose the letter of the answer that you think best answers the questions.

1. In the figure, there are three similar right triangles by Right Triangle Similarity Theorem. Name the triangle that is missing in the statement: $\Delta HOP \sim ___\sim \Delta OEP$. *A*. ΔHOE B. ΔHEO C. ΔHOP D. ΔPEO

Е

65

9

2. What similarity concept justifies that $\Delta FEL \sim \Delta QWN$?

A. Right Triangle Proportionality Theorem

- B. Triangle Proportionality Theorem
- C. SSS Similarity Theorem
- D. SAS Similarity Theorem
- 3. If $\frac{AC}{AS} = \frac{AM}{AY}$, which of the following data makes $\Delta CAM \sim \Delta SAY$ by SAS Similarity Theorem

F

S

Μ

С

- $A. \angle CAM \cong \angle SAY$
- $B. \angle ACM \cong \angle ASY$
- $C. \angle AMC \cong \angle AYS$
- $D. \angle SCM \cong \angle YMC$
- 4. $\triangle ABC \sim \triangle DEF$. If $\overline{DE} = 12cm$, $\overline{AB} = 6$ cm, and $\overline{BC} = 3$ cm then \overline{EF} is equal to _____.
 - A.1.5 cm B. 3 cm C. 6 cm D. 9 cm

5. In ΔDEW , $\overline{AB} \parallel \overline{EW}$, if $\overline{AD} = 4 \text{ cm}$, $\overline{DE} = 12 \text{ cm}$ and $\overline{DW} = 24 \text{ cm}$ then the value of $\overline{DB} =$ ____.

D. $5\sqrt{2}$

- A. 4 cm B. 8 cm C. 12 cm D. 16 cm
- 6. In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$ and $\overline{AC} = 64$, what is the value of x?
 - A. 24 B. 28 C. 4 D. 7
- 7. In the figure, find the value of \overline{BD} .
 - A. 2√5 B. 5 C. 10

10

36

96

C

<u>USLEM –</u>	MATHEMATICS 9) –Q3		THIRD QUARTER
	3-ft ladder is le does the ladd		a wall. The ba	se of the ladder is 5 feet from the wall. How high up the
A. 1	1 ft	B. 12 ft	C. 13 ft	D. 14 ft
9. In ∆	ABC, AM bisec	$ts \ \angle BAC, \text{ if } \overline{CM}$	= 6, \overline{MB} = 8 ar	nd the perimeter of $\triangle ABC$ is 42 then \overline{AB} is A
A. 1	2	B. 14	C. 16	D. 18
10. ln 1	the figure, \overline{AB}	$\ \overline{CD}, \text{ if } \overline{BO} = 6$	$, \overline{OC} = 12 \text{ and } \overline{A}$	$\overline{AB} = 9 \text{ find } \overline{CD}.$
A. 1	2	B. 14	C. 16	D. 18 A O D
		BC, \overline{CD} is the a 3 = 3, how long		AB.
A. 6	5	B. 12	C. 18	D. 36
12. Th	e sum of the no	on-right angles	of a right trian	gle is CV
A. 9	00°	B. 180°	C. 270°	D. 360°
	<i>BC</i> has a right -3 cm, find \overline{A}	-	is the altitude	to \overline{AB} . If $\overline{CD} = 6$ cm, $\overline{AD} = 3$ cm and $\overline{DB} = A_{3}$
A. 3	cm	B. 6 cm	C. 15 cm	D. 36 cm $D = 5_{x-3}$
	the figure, ΔDQ = 6 and b=18,		QC is the altitud	de upon the hypotenuse \overline{DR} , Q C B
A.1	2	B. 17	C. 18	D. 14
	the figure, ΔXY = $\sqrt{27}$ find h.	Z is a right tria	ngle with right .	$\angle Y$. \overline{YW} is the altitude to the hypotenuse XZ. If $r = \sqrt{3}$ and \mathbf{Y}
A. 3		B. 9	C. 27	D. 81 z h
III. Loo	oking Back			x <u>r th</u> s z
Dire	ections: Fill in t	he blanks with	the best answe	er. W
1.	If the three an	gles of one tria	angle are	to three corresponding angles of another triangle,
	then the two t	riangles are sir	nilar.	
2.	If the sides of	one triangle ar	те	_ to the corresponding sides of a second triangle, then
	the triangles a	are similar.		
3.	If two sides of	one triangle a	re proportional	to the corresponding two sides of another triangle and
	their respectiv	ve included ang	les are congru	ient, then the triangles are
4.	The	to the hypo	tenuse of a rigl	ht triangle separates the right triangle into two triangles

- which are similar to each other and to the original triangle.
- 5. The altitude to the hypotenuse is the _____between the segments into which it separates the hypotenuse.
- Each ______ is a geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to the leg.

20

III. Brief Introduction:

Having illustrated, proved, and verified all the theorems on similarity in the previous section, your goal now in this section is to take a closer look at some aspects of the topic. This entails you to tackle on more applications of similarity concepts.

Your goal in this section is to use the theorems in identifying unknown quantities involving similarity proportion.

Your success in this section makes you discover math-to-math connections and the role of mathematics, especially the concepts of similarity.

Examples:

1. In \triangle BAR, $\overline{CD} // \overline{RA}$. If $\overline{AD} = 8$, $\overline{CR} = 4$, and $\overline{BD} = 20$, find \overline{BC} .

Solution:Since \overline{CD} // \overline{RA} , $\Delta BCD \sim \Delta BRA$ $\frac{\overline{BC}}{\overline{BR}} = \frac{\overline{BD}}{\overline{BA}}$ by the definition of $\sim \Delta s$ $\frac{\overline{BC}}{\overline{BC}+4} = \frac{20}{28}$ $\overline{BC} = 20\overline{BC} + 80$ Cross- Product Property $8\overline{BC} = 80$ Subtract $20\overline{BC}$ from each side $\overline{BC} = 10$ Divide each side by 8

2. Find the value of \overline{PN} in the figure.

Solution:

$$\overline{\frac{AP}{AI}} = \overline{\frac{PN}{IN}}$$

$$\frac{5}{6} = \frac{\overline{PN}}{9-\overline{PN}}$$

$$6\overline{PN} = 45 - 5\overline{PN}$$
Cross-Product Property
$$11\overline{PN} = 45$$
Add 5N to both sides
$$\overline{PN} = \frac{45}{11} \text{ or } 4\frac{1}{11}$$
Divide each side by 11

3. Given right triangle RAE, WITH AP as an altitude.
a. If RP = 4 and PE = 9, find AP and AR.
b. If PE = 40 and RE = 50, find AP.

Solutions:

a.
$$\frac{\overline{RP}}{\overline{AP}} = \frac{\overline{AP}}{\overline{PE}}$$
$$\frac{\overline{RP}}{\overline{AR}} = \frac{\overline{AR}}{\overline{RE}}$$
$$\frac{\frac{4}{\overline{AP}}}{\frac{\overline{AP}}{\overline{9}}} = \frac{\overline{AP}}{\overline{9}}$$
$$\frac{\frac{4}{\overline{AR}}}{\overline{AR}} = \frac{\overline{AR}}{\overline{13}}$$
$$(\overline{AP})^2 = 36$$
$$(\overline{AR})^2 = 52$$
$$\overline{AP} = 6$$
$$\overline{AR} = 2\sqrt{13}$$

b.
$$\frac{\overline{RP}}{\overline{AP}} = \frac{\overline{AP}}{\overline{PE}}$$
$$\frac{10}{\overline{AP}} = \frac{\overline{AP}}{40}$$
$$(\overline{AP})^2 = 400$$
$$\overline{AP} = 20$$

We can deduce that
$$\overline{RE} = \overline{RP} + \overline{PE} = 13$$

R

9

We can deduce that $\overline{RP} = \overline{RE} - \overline{PE} = 50 - 40 = 10$

Ρ

Ν

5

6

F

4. If your classmate is 5 feet tall and casts a shadow of 4 feet at the same time that the flagpole casts a 12-foot shadow, what is the height of the flagpole?

Solution:

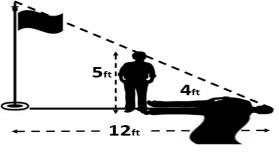
 $\frac{5}{4} = \frac{x}{12}$ 4x = 60Cross-Product Property of Proportion x = 15Divide each side by 4

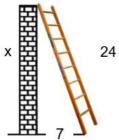
Therefore, the flagpole is about 15 feet tall.

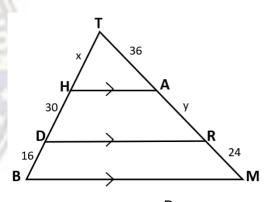
5. A 24-feet ladder is leaning against a wall. The base of the ladder is 7 feet from the wall. How high up the wall does the ladder reach?

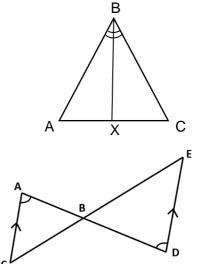
Solution: Use the Pythagorean theorem: $a^2 + b^2 = c^2$

$$x^{2} + (7)^{2} = (24)^{2}$$
$$x^{2} + 49 = 576$$
$$x^{2} = 527$$
$$x = 22.96$$

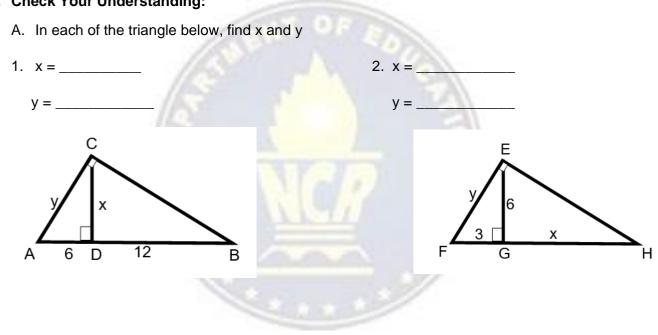

Therefore, the top of the ladder is about 22.96 feet from the ground.


2. y =

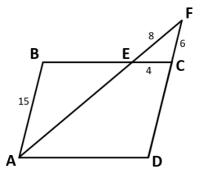

IV. Activities:


A. In the figure $\overline{HA} \parallel \overline{DA} \parallel \overline{BM}$, find:

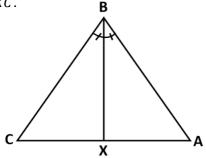
- 1. x = _____
- B. In $\triangle ABC$, \overline{BX} bisects $\angle ABC$.
 - 1. If $\overline{AX} = 7$, $\overline{XC} = 5$, $\overline{BC} = 9$, find \overline{AB} .
 - 2. If $\overline{AX} = 8$, $\overline{BC} = 9$ and $\overline{AC} = 12$, find \overline{AB} .
- C. In the figure, $\overline{AC} \parallel \overline{ED}$ and $\angle A \cong \angle D$.
 - 1. If $\overline{AC} = (x 25)$, $\overline{AB} = 44$, $\overline{ED} = 40$, $\overline{BD} = 55$, find the value of x and \overline{AC} .



D. Find the value of each variable.

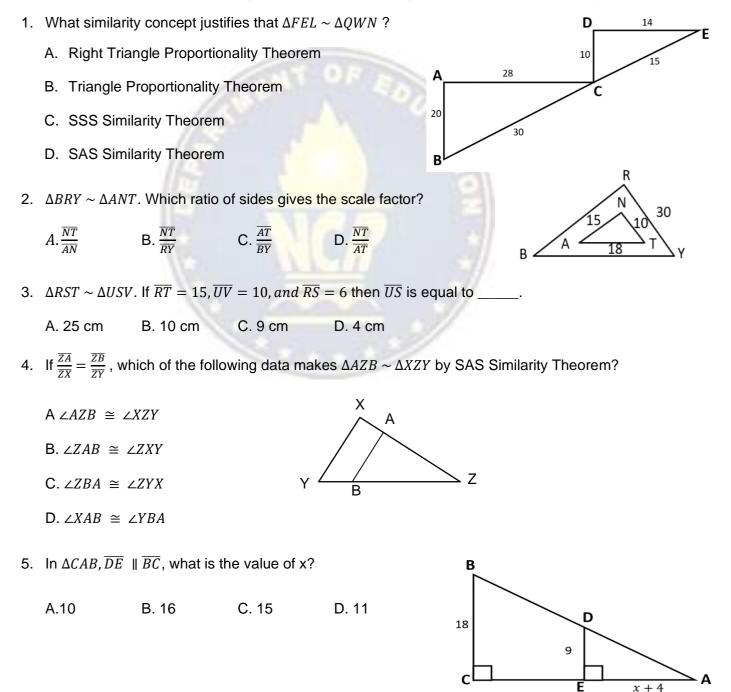


REMEMBER: Recalling the theorems on similar triangles and right triangles would be very helpful and important in order to solve the given problems precisely and easily.



V. Check Your Understanding:

B. In the figure, $\overline{DC} \parallel \overline{FE} \parallel \overline{AB}$. If $\Delta BEA \sim \Delta CEF$, find measure of \overline{BE} and \overline{AE} .



C. In $\triangle ABC$, \overline{BX} bisects $\angle ABC$. If $\overline{AB} = 10$, $\overline{BC} = 8$ and $\overline{AC} = 12$, find \overline{AX} and \overline{XC} .

VI. Post-test

Direction: Read each item carefully. Choose the letter that you think best answers the question.

30

а

С

R

6

D

D

12

16

20

6. In $\triangle ADB$, $\overline{AB} \parallel \overline{EC}$, if $\overline{AB} = 49cm$, $\overline{CE} = 21cm$, and $\overline{AD} = 35cm$, find the value of \overline{DE} .

A.10 cm B. 15 cm C. 20 cm D. 42 cm

7. Heart wants to know the height of a street lamp. She discovers that when she is 12 feet from the lamp, her shadow is 6 feet long. If she is 5ft tall, find the height of the street lamp.?
A. 16 ft
B. 15 ft
C. 14 ft
D. 13 ft

8. If $a \parallel b$ and $b \parallel c$ and p and q intersect a, b, c, find x.

- A.15 B. 18 C. 20 D. 22
- 9. In the figure, $\overline{AB} \parallel \overline{CD}$, if $\overline{BA} = 27$, $\overline{CD} = 45$, and $\overline{CD} = 50$ find \overline{BO} .

A. 60

B. 50

C. 45

D. 30

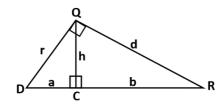
equal to _____

- 10. In $\triangle ABC$, \overline{AM} bisects $\angle BAC$, if $\overline{CM} = 6$, $\overline{MB} = 8$ and the perimeter of $\triangle ABC$ is 42 then \overline{AB} is A
 - A.12 B. 14 C. 16 D. 18

11. In right triangle ABC, \overline{CD} is the altitude to base \overline{AB} . If $\overline{AB} = 13$ and $\overline{BD} = 4$, how long is \overline{DC} ?

A.6 B. 9 C. 12 D. 15

12. The sum of the non-right angles of a right triangle is _____


A.90° B. 180° C. 370° D. 360°

13. $\triangle ABC$ has a right angle at C. \overline{CD} is the altitude to \overline{AB} . If $\overline{CD} = 6$ cm, $\overline{AD} = 3$ cm and $\overline{DB} = 5x - 3$ cm, find \overline{BD} .

A. 6 cm B. 9 cm C. 12 cm D. 15 cm

14. In the figure, ΔDQR is a right Δ , \overline{QC} is the altitude upon the hypotenuse \overline{DR} , if a = 4 and $\overline{DR} = 20$, find r.

A. 8 B. 10 C. 12 D. 16

15. In the figure, ΔXYZ is a right triangle with right $\angle Y$. \overline{YW} is the altitude to the hypotenuse \overline{XZ} . If r = 3 and

ANSWER KEY:

Pre-Test: 1. B 2. D 3. A 4. C 5. B 6. D 7. B 8. B 9. C 10. D 11. A 15. ALooking Back 1. congruent 2. proportional 3. similar 4. altitude 5. geometric mean 6. legActivities A. 1. $x = 24$ 2. $y = 45$ B. 1. $AB = \frac{63}{5}$ or 12.6 2. $AB = 18$ C. 1. $x = 57$ 2. $\overline{AC} = 32$ D. 1. $x = 8$ 2. $y = 4\sqrt{5}$ 3. $z = 8\sqrt{5}$ Check Your Understanding A. 1. $x = 6\sqrt{2}$ $y = 6\sqrt{3}$ 2. $x = 12$ $y = 3\sqrt{5}$ B. 1. $AX = \frac{20}{3}$ or $6\frac{2}{3}$ C. 1. $AX = \frac{20}{3}$ or $6\frac{2}{3}$ C. 1. $AX = \frac{20}{3}$ or $6\frac{2}{3}$ D. 1. $AX = \frac{16}{3} = 5\frac{1}{3}$ Post Test 1. C 2. B0.1. $x = 57$ 2. $\overline{AC} = 32$ D. 1. $x = 8\sqrt{5}$ 0.1. $AX = \frac{20}{3}$ or $6\frac{2}{3}$ C. 1. $AX = \frac{16}{3} = 5\frac{1}{3}$ 0.1. AX = $\frac{16}{3} = 5\frac{1}{3}$ 0. C
